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Simultaneous sedimentation and coalescence of a 
dilute dispersion of small drops 
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Macroscopic phase separation and the evolution of the drop size distribution for non- 
homogeneous dispersions, in which buoyancy-driven settling and coalescence of drops 
cause spatial as well as temporal variations of the drop size distribution, was analysed 
by numerical solution of the population dynamics equations. Collision efficiencies 
based on detailed hydrodynamic interactions of spherical drops with clean interfaces 
were incorporated in the description of the pairwise drop coalescence rates. A 
dimensionless parameter that characterizes the relative importance of settling and 
coalescence was identified. For finite values of this parameter, the phase separation 
rates and average drop size initially increase owing to coalescence, and then decrease 
owing to the larger drops settling out of the dispersion. 

1. Introduction 
Dispersions of drops of one fluid in a second, immiscible fluid are frequently 

encountered in industrial and natural processes such as extraction, raindrop growth, 
food and beverage processing, and the formation of liquid-phase-miscibility-gap 
materials. In a finite container, drop migration due to buoyancy forces generally results 
in an inhomogeneous dispersion with phase separation. In certain applications, this is 
the desired result. An example is aqueous biphasic partitioning, in which the two 
phases must separate subsequent to mixing for the partitioned component to be 
recovered. A counter-example is the processing of liquid-phase-miscibility-gap metals, 
for which the desired product is a composite material with fine particles of one metal 
uniformly dispersed in a matrix of the other. In this paper, we predict the macroscopic 
phase separation and the temporal and spatial evolution of the drop size distribution 
for small drops in a dilute finite dispersion subject to gravitational motion and 
coalescence. 

Gravity sedimentation of particles in the absence of coalescence or aggregation has 
been studied extensively (e.g. Davis & Acrivos 1985). Similarly, coalescence of drops 
in spatially uniform dispersions in the absence of phase separation has been modelled 
extensively (Berry & Reinhardt 1974; Rogers & Davis 1990a, b; Satrape 1992; Wang 
& Davis 1993; Zhang, Wang & Davis 1993). However, there are only a few studies of 
simultaneous sedimentation and coalescence. A notable example is the important study 
of Reddy, Melik & Fogler (1981). They developed a general population dynamics 
equation which accounts for creaming (sedimentation) as well as flocculation 
(coalescence) due to Brownian motion and gravity sedimentation. Example numerical 
calculations were done for a specific oil-in-water system. They noted that the size 
distribution shifts toward larger particles (drops) when flocculation dominates, toward 
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smaller particles when creaming dominates, and initially toward larger particles and 
subsequently toward small particles when both mechanisms are important. 

In the current work, we predict the macroscopic phase separation and drop size 
distributions for buoyancy-driven sedimentation and coalescence of immiscible 
dispersions of drops by solving the general population dynamics equations with both 
temporal and spatial dependence retained, and incorporating a mass balance on the 
drops arriving at the moving interface between the two phases which form. The 
problem is similar to that considered by Reddy et al. (1981), except that the rate of 
phase separation is specifically addressed in our work. Also, complete hydrodynamic 
interactions between pairs of spherical drops with internal circulation are accounted 
for by using the droplet collision efficiencies recently computed by Zhang & Davis 
(1991), whereas Reddy et al. (1981) employed sedimentation velocities for rigid spheres 
and used collision efficiencies based on Brownian aggregation of rigid particles. Thus, 
the current work applies to drops with clean interfaces, whereas the previous work 
applies to drops which are either extremely viscous or else have surfactants present 
which retard interfacial motion and internal circulation. Colloidal phenomena such as 
Brownian motion and electrostatic repulsion were considered by Reddy et al. (1981), 
but we restrict our attention to larger drops for which these effects are small. 

It is assumed in this study that the drops are sufficiently small that both the Reynolds 
number and capillary number are small compared to unity, indicating that inertia is 
negligible and that the drops remain spherical, but that the drops are not so small that 
Brownian motion is significant. For common liquids, these conditions are met for 
drops with diameters of 2-100 pm (Zhang & Davis 1991). In $2, the problem to be 
solved is defined, and the population dynamics models and the expression for collision 
rate are presented. In $ 3, a dimensionless parameter characterizing the relative 
importance of coalescence and settling is identified, and the method of solution of the 
general population dynamics equations is discussed. In $4, the results of numerical 
modelling of phase separation and the evolution of drop size distribution are presented 
and discussed. Most of the results are presented in dimensionless form, with an 
exception made for illustrative purposes for a typical dispersion. Concluding remarks 
are given in $ 5 .  

2. Theoretical development 
We consider a dilute dispersion of spherical drops of viscosity p‘ and density p’ 

dispersed in an immiscible fluid of viscosity p and density p. Both fluids are Newtonian, 
and it is assumed that there are no surfactants on the drop surfaces. The typical 
problem of interest is illustrated in figure 1. The initial condition (figure l a )  is a 
uniform suspension of droplets or bubbles of one fluid dispersed in a second, 
immiscible fluid. After mixing is stopped, the drops (or bubbles) begin to rise owing to 
buoyancy (assuming, for illustrative purposes, that p’ < p). It is assumed that there is 
no imposed flow after stirring ceases, other than as a result of the motion of individual 
drops. As the drops reach the top of the container, they coalesce into an overlying, 
segregated layer of the dispersed-phase fluid (figure lb). This layer grows with time 
(figure 1c) until all of the dispersed drops have coalesced into it (figure ld) .  The 
problem is complicated by the possibility that the drops also collide and coalesce with 
each other as they rise, and, because the larger drops move faster and leave the smaller 
ones behind, the drop size distribution varies with both time and position. 

The temporal and spatial evolutions of the drop size distribution during a phase 
separation process, such as illustrated in figure 1, are studied by using population 
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FIGURE 1. Schematic of the time evolution of the phase separation process due to the 

simultaneous migration and coalescence of rising drops or bubbles. 

dynamics equations. In discretized form, these equations are given by a differential 
mass balance on each size category, i: 

N an, a(uin,) - I ,-l -+---C J . .  j ( 2 - 3 )  . -C Jij ,  i =  1,2 ,..., N ,  
at a Z  2j,1 j=1 

where n, is the number of drops per unit volume in the discrete size category i, ui is the 
settling velocity of drops of size i, t is time, z is the direction of drop migration (vertical, 
as defined in figure I), Jij is the rate of collisions per unit volume of size-i drops with 
size-j drops, and N is the total number of size categories. The first term on the right- 
hand side of (1) is the rate of formation of size-i drops by collision of two smaller drops, 
where the factor o f t  avoids double counting, and the second term is the rate of loss 
of size-i drops due to their collisions to form larger drops. 

The collision rate between drops in size category i (larger drops) and the size 
category j (smaller drops) may be expressed as (Zhang & Davis 1991) 

(2) 
where a, and aj are the large and small drop radii, respectively, and Eij is the collision 
efficiency. The collision efficiency equals unity when the drops move independently 
until colliding; values of Eij differing from unity take account of the hydrodynamic and 
repulsive forces which cause the drops to move around one another and the attractive 
forces which pull them together. In general, Eij is a function of the radius ratio, 
h = aj/ai, the viscosity ratio, ,ii = ,u'/,u, and any dimensionless measures of the 
magnitude of the interparticle forces between the drops in the system of interest. The 
collision efficiencies computed by Zhang & Davis (1991) account for the possibility of 
attractive van der Waals forces but not for repulsive electrostatic forces. It is assumed 
that collisions result in coalescence rather than in the two drops bouncing off each 
other or in the formed drop subsequently breaking into smaller drops. This assumption 
is expected to be valid in the absence of stirring, turbulence, and inertia, which might 
cause drop breakage. 

The speed of a single drop due to gravity sedimentation was first analysed 
independently by Hadamard (19 1 1) and Rybczynski (1 9 1 1) : 

Jij = n, nj n(a, + aj)2 I ui - uj I Eij, 

where g is the gravitational acceleration. This expression is valid provided that the 
Reynolds number, Re = pu, a,/,u, is small compared to unity. In a dispersion of drops, 
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the average sedimentation velocity is given by (3) multiplied by a hindered settling 
function which accounts for the effects of multidroplet interactions and fluid backflow. 
For the dilute dispersions considered here, these effects are negligible. 

The initial condition for ( 1 )  for well-mixed dispersions is 

n . = n .  a 20, t = 0 ,  O d z d H ,  i = 1 , 2  ,..., N .  (4) 

The rate at which the lighter phase grows at the top of the vessel due to droplets 
reaching this phase is determined by a mass balance: 

where the left-hand side is the rate of accumulation of the upper phase and the right- 
hand side is the flux of drops into the upper phase, or 

N dh 
= - C uiniv,/(l - q5) at z = h,(t), 

dt i=l 
(5 )  

where A is the cross-sectional area of the container, vi = $ma: is the volume of a drop 
of size i, and q5 = XKl vi n, is the total volume fraction of droplets in the suspension just 
below the upper interface at z = h,(t). The initial condition is h, = H at t = 0. 

3. Method of solution 
We define the following dimensionless variables: Lit = a,/a,, 2 = z / H ,  zi, = ui/uo, 

t" = tu,/H, and ri, = ni 47~a:/3?,,~ where a, is a characteristic drop radius, defined here 
as the average radius in the initial distribution, u, is the characteristic gravity settling 
velocity of isolated drops with radius a,, and q5, is the initial volume fraction of the 
dispersed drops. In dimensionless form, (l), together with (2), becomes 

+ (%7 ri, lij(Cii + bj)z I zi, - lij I Ei,j, i = 1,2, . . . , N .  (6) 

Note that the relative importance of coalescence and sedimentation depends on a single 
parameter, N, = 7,/7, = 34, H/4a,, where 7, = H/u,  is the characteristic settling time 
for a drop with velocity u, and radius a,, to travel the length of the container, and 
7, = 4a0/(3q5, u,) is the characteristic coalescence time for drops having characteristic 
radius a,, velocity u,, and an initial total volume fraction of 4, (Wang & Davis 1993). 
N, is roughly the number of collisions occurring for a drop with radius a, as it travels 
the length of the container, although we note that the collision frequency may be much 
lower if the collision efficiencies are much less than unity. When N, + 1 ,  the right-hand 
side of (6) is small, and so coalescence is negligible, and the two terms on the left-hand 
side balance. In contrast, coalescence is expected to be rapid when N ,  $- 1. The right- 
hand side of (6) is then balanced primarily by the time-dependent term and the 
coalescence process is quasi-homogeneous. 

The dimensionless version of (5 )  is 
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The initial size distributions, assumed uniform for 0 < 2 < 1 ,  were chosen to be 
normal distributions on a number basis, as specified by the number-averaged drop 
radius, a,, and the standard deviation, B, of drop radii. In dimensionless form, normal 
distributions are characterized by a single dimensionless parameter, G = a/a,. 
Although initial distributions are typically specified in terms of the number distribution 
of the drops, the common practice (Rogers & Davis 1990a; Satrape 1992; Wang & 
Davis 1993; Zhang et al. 1993) is to follow the evolution of the size distribution in 
terms of a volume density function, flln B), defined such thatflln B) d In B is the volume 
of droplets having dimensionless radii whose natural logarithm is within the interval 
In B -kg In 6, per unit volume of dispersion. Thus, the integral offlln 6) equals the total 
volume fraction of the dispersed phase: 

lomflln 6)  d In B = $(2, i), 

where $(2, f) is the total volume fraction of the dispersed phase at given position 2 and 
time i. 

The population dynamics equations were solved using the hybrid numerical scheme 
used previously by Clark (1973), Clark & Hall (1979), and Hall (1980) in atmospheric 
modelling of cloud and raindrop formation. This scheme is a combination of the 
Lax-Wendroff finite-difference method (Lax & Wendroff 1960 ; Fletcher 1991), or the 
Crowley method (Crowley 1968), which is equivalent to Lax-Wendroff method for the 
conditions in this study, and a first-order upstream difference method. Such a hybrid 
scheme assures the positive definiteness of the positive variable, Gt, and does not have 
the severe numerical dispersion properties common to the upstream-difference method. 
Interested readers are referred to Hall (1980) for a detailed discussion of the method. 

The numerical method used logarithmic discretization of drop spectra into N 
categories which have equal spacing in the logarithm of droplet mass or volume, with 
the mass or volume of a droplet within each discrete category doubling every fourth 
category, as described by Rogers & Davis (1990~) and Wang & Davis (1993). The 
range of dimensionless droplet radii considered is 0.01 to 100, although the numerical 
implementation can handle even larger size ranges. The container is divided into 50 
equal-spaced segments, so that the spatial step size is A2 = 0.02. The dimensionless 
time step A i  used in the calculations is typically A i =  10-5-10-3, depending on the 
parameter N,, in order to meet the stability criterion aAi/A2 < 1 for the Lax-Wendroff 
numerical scheme. The step sizes in space, time, and radius were chosen based on 
halving their values until the calculated average radius of the distribution converged 
within 2 YO. The total volume fraction of the dispersed phase was computed after each 
time step and checked against the input value $ o ;  the agreement was within 5 YO for the 
conditions used in this study. As a further check of the calculations, the collision 
kernals of Reddy et al. (1981) were used in our numerical scheme. The average radii 
for various times were found to agree with those extracted from the distribution graphs 
of Reddy et al. (1981) to within 1-5Y0. 

4. Results and discussion 
The dimensionless parameters which affect the macroscopic behaviour of a 

dispersion include the time-scale ratio, N,, the viscosity ratio, I; = p'/p, the 
dimensionless standard deviation of radii in the initial distribution, c? = cr/ao, and the 
initial volume fraction, $,. Note that the value of $o affects the dimensionless rate of 
phase separation through (7), but it is scaled out of the population dynamics equation 
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FIGURE 2. Time evolution of the drop size distribution at 1 = 0.5 for a dispersion having ,G = 0.1, 
c? = 0.2, and N, = 50. 

(6) which governs the size distribution. Although j 2  does not appear explicitly in the 
dimensionless equations, it does appear implicitly because the collision efficiencies 
decrease with increasing j 2  (Zhang & Davis 1991). In order to reduce the number of 
parameters, we consider dispersions for which interparticle forces are negligible, except 
that van der Waals attractions are included in the physical example provided at the end 
of this section. 

When the characteristic coalescence time for a dispersion is much larger than the 
characteristic sedimentation time scale, so that N,+O, the drops settle out of the 
dispersion with no collisions and coalescence. In this limit, the population dynamics 
equation (6) simplifies to 

ad, a(ziifi,) 
at^ a i  -+- = 0 ,  i = 1 , 2  ,..., N .  (9) 

Using the method of characteristics, (9) has the analytical solution 

fit(& ?+At^) = fi,(i--zi,At^, f), i = 1,2, ..., N .  (10) 

The above solution indicates that all drops with velocity b, located at the position 
i - z i ,  Af will be located at the position i after At̂  has elapsed. 

When the characteristic coalescence time for a dispersion is much less than the 
characteristic sedimentation time scale, so that N, + co, then coalescence is the 
dominant process. In this limit, corresponding to an infinite container, the dispersion 
will be spatially homogeneous. Note that spatial inhomogeneities also do not develop 
in the interior of a finite container for short times, because drops which sediment out 
of a control volume are replaced at an equal rate by drops moving into the control 
volume. The evolution of the drop size distribution due to gravitational collisions for 
homogeneous dispersions has been studied in detail by Wang & Davis (1993). 

In figure 2, we show typical plots of the droplet size distribution evolution at the 
middle of the container, 2 = 0.5, due to simultaneous sedimentation and coalescence 
for a dispersion system with I ;  = 0.1, 3 = 0.2, and N, = 50. It is shown that the drop 
size distribution initially shifts to large drop sizes due to coalescence. After a certain 
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FIGURE 3. Time evolution of the drop size distribution at 2 = 0.5 and t / 7 ,  = 0.1, for a dispersion 
having ,ii = 0.1, d = 0.2 and different N,;  the dotted line represents the initial distribution at t / 7 ,  = 0. 

time, however, the drop size distribution begins to shift toward small drop sizes, owing 
to the larger drops settling out of the dispersion. It is also shown in figure 2 that the 
areas under the curves become smaller with time increasing, corresponding to 
decreasing volume fraction at 2 = 0.5. Similar behaviour of the evolution of the drop 
size distribution has been predicted by Reddy et al. (1981). It is noted that this 
behaviour is significantly different from the evolution of the drop size distribution with 
N ,  = 0 (no coalescence) or N, = co (homogeneous dispersions). When coalescence is 
absent, the drop size distribution shifts monotonically toward smaller drops, as the 
large drops settle out. In the case of homogeneous dispersions, the drop size shifts 
monotonically toward larger drops owing to coalescence, and the drop size distribution 
evolves into a bimodal distribution with large spread (Wang & Davis 1993). 

The influence of the time-scale ratio N, on the evolution of drop size distribution at 
dimensionless position 2 = 0.5 and dimensionless time t/7, = 0.1 is shown in figure 3 
for a dispersion with c? = 0.2, and @ = 0.1. It is apparent that increasing N ,  
corresponds to increasing the relative importance of coalescence; thus, the average 
drop size increases with N, increasing. Referring to the definition N, = 35!1~ H/4a0, 
increasing values of this parameter occur for increasing concentration and increasing 
container height divided by the average radii; both effects allow more collisions. Figure 
4 shows the corresponding results for the evolution of the average radius (defined in 
Wang & Davis 1993 as the radius of a drop having the mass-averaged volume) versus 
time for different values of N,. It is seen that the average droplet radius initially 
increases with time owing to coalescence; after the larger drops sediment out of the 
dispersion, the average radius begin to decrease. The maximum average drop radii are 
1.43a0, 1.74a0, and 2.69a0, occurring at t/7, = 0.14, 0.1 1 and 0.07, for N, = 10, 20 and 
50, respectively. 

Figure 5 presents results of the evolution of the average radius versus time at 
different positions for a dispersion having @ = 0.1, c? = 0.2 and N, = 50. It is seen that 
the drop growth rates for short times are the same for all three positions; this is a result 
of the dispersion remaining homogeneous until the largest drops rise past a given 
position. At t/7s = 0.04, however, the average radius at z" = 0.1 begins to decrease, 
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FIGURE 4. Time evolution of the average drop radius at z  ̂ = 0.5 for a dispersion having ,ii = 0.1 
and 6 = 0.2. 
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FIGURE 5 .  The evolution of the average drop radius with time at different positions for a 
dispersion having f i  = 0.1, C? = 0.2, and N, = 50. 

while the average drop radii at 2 = 0.5 and 0.9 continue to increase with time. The 
times for the average radii to reach their maxima of 1.48a0, 2.78a0, and 3 . 8 6 ~ ~  are 
0.04t/rs, 0.07t/rs, and 0.08t/rS, for 2 = 0.1, 0.5 and 0.9, respectively. Figure 6 shows 
the corresponding drop size distributions for different positions at dimensionless time 
t / 7 s  = 0.1 for the same dispersion as in figure 5 .  The greatest shifts toward larger drops 
occur near the top of the container, because the rising drops experience more collisions 
as they travel further to reach the upper regions of the container. At dimensionless time 
t / ~ ,  = 0.1, most of the large drops have floated out of the part of dispersion with 
2 < 0.1 ; thus, the volume fraction at 2 = 0.1 at t/7* = 0.1, as shown by the area under 
the curve, is much smaller than that in the initial distribution. 
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FIGURE 6. The drop size distribution at time t /7 ,  = 0.1 and different positions for a dispersion 
having ,ii = 0.1, d = 0.2 and N,  = 50. 
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FIGURE 7. The variation of volume fraction with position at different times for a dispersion 
having I; = 0.1, d = 0.2 and N, = 20. 

The variation of the droplet volume fraction with dimensionless position 2 at 
different times is shown in figure 7 for a dispersion with I; = 0.1, 3 = 0.2, and N, = 20. 
The volume fraction in the lower regions of the container decreases rapidly with time 
as the drops rise. For short times, the volume fraction in the upper regions of the 
dispersion is the same as the initial volume fraction. This is because droplets which rise 
out of a control volume at the top of dispersion are replaced at an equal rate by 
droplets moving into the control volume. Thus, for short times, the evolution of the 
drop size distribution in the upper regions of the dispersion will be the same as that 
predicted for an homogeneous dispersion. With time increasing, however, larger drops 
rise out of the dispersion, and the volume fraction at any height in the dispersion 
system is significantly less than the initial volume fraction. 
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FIGURE 8. The drop size distribution at 2 = 0.5 for (a) t /7 ,  = 0.1 and (b) t / T ,  = 0.2, for a 
dispersion having 3 = 0.2 and N, = 20; the dotted line for each case is the initial distribution. 

Figure 8 represents results of the influence of the viscosity ratio on the evolution of 
the drop size distribution at dimensionless height h = 0.5, and dimensionless times 
t / 7s  = 0.1 and 0.2, for a dispersion having C? = 0.2 and N, = 20. It is seen in figure 8(a) 
that, with an increase in the viscosity ratio, the rate of growth of the drop size 
distribution decreases. For ,i2 = 0.1, the drop size distribution shifts significantly 
toward large drop sizes, while the change of drop size distribution at t / 7 ,  = 0.1 is 
insignificant for ,L = 10. This is because the hydrodynamic resistance between colliding 
drops increases with an increase in viscosity ratio, leading to very small collision 
efficiencies for large viscosity ratios. Davis, Schonberg & Rallison (1989) used 
lubrication theory to describe how the increased internal flow with decreasing drop 
viscosity allows the surrounding fluid to more easily flow out of the gap separating two 
colliding drops. As shown by Zhang & Davis (1991), the resulting typical collision 
efficiencies for gravity-induced coalescence are O(10-l) and 0(10-'), for L; = 0.1 and 
,ii = 10, respectively. Figure 8(b) shows the drop size distribution for the same 
dispersion at dimensionless time t / 7 ,  = 0.2. At this time, a significant amount of the 
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FIGURE 9. Percentage of the mass (or volume) of the dispersed-phase fluid which remains dispersed 
versus time for a dispersion having ,ii = 0.1, $,, = 0.05, C? = 0.2 (solid lines), C? = 0.1 (dashed lines) and 
different N-. 

drop phase has floated out of the dispersion. Since the drop collision and coalescence 
rates increase with a decrease in viscosity ratio, and since coalescence results in larger 
drops which rise out of the dispersion faster, the drop volume fraction at t / 7 ,  = 0.2 and 
z” = 0.5, as indicated by the area under each curve, decreases from 0.974, to 0.844, to 
0.574, with I; decreasing from 10 to 1 to 0.1. 

Figure 9 shows the percentage of volume (or mass) of the dispersed-phase fluid 
remaining dispersed as a function of time for a dispersion with I; = 0.1, 4, = 0.05, and 
different N,. The solid and dashed lines represent the results for 6 = 0.2 and 6 = 0.1, 
respectively. It is seen that increasing the parameter N, significantly increases the phase 
separation process. The times required for 10 % of the dispersed-phase fluid to float out 
of the dispersion (i.e. 90% of drop phase still in the dispersion) for 6 = 0.2 are 
t /rs  = 0.10, 0.09, 0.08 and 0.05, for N, = 0, 10, 20 and 50, respectively. The times 
required for 90 YO of the dispersed-phase fluid to float out of the dispersion for 6 = 0.2 
are t / 7 s  = 0.86, 0.67, 0.53 and 0.29, for N, = 0, 10, 20 and 50, respectively. Figure 9 
also presents results for the influence of the spread of the initial drop size distribution 
on the phase separation process. It is shown that the phase separation process slows 
down with 6 decreasing. A smaller spread in the initial distribution implies that the 
relative velocities of drops in many of the interacting size categories are smaller. 
Therefore, a lower rate of collisions and phase separation is observed. 

Typical results for the gravitational phase separation rate are shown in figure 10 for 
a dispersion having I; = 0.1, 6 = 0.1 (dashed lines), 6 = 0.2 (solid lines), $o = 0.05, and 
different N,. When N, = 0, no coalescence occurs. Phase separation then occurs at a 
constant rate until the largest drops rise out of the dispersion, after which the phase 
separation rate monotonically decreases owing to fewer and smaller drops arriving at 
the phase interface. When N, > 0, the phase separation rate initially increases, because 
coalescence leads to larger drops with faster rise rates. Once these drops rise out of 
suspension, however, the phase separation rate reaches a maximum and then decreases 
as only smaller drops remain. Note that relatively large values of N, 2 O(10) are 
necessary for coalescence to significantly affect the phase separation process. This is 
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FIGURE 10. The rate of phase separation versus time for a dispersion having I; = 0.1, 6 = 0.2 
(solid lines), 6 = 0.1 (dashed lines), q50 = 0.05 and different N, in a container of finite depth. 
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FIGURE 1 1 .  The collision efficiency as a function of the radius of the larger drop for lead drops in an 
aluminium melt at different drop size ratios. The large increases as the drops become small are due 
to van der Waals attractions. 

because typical collision efficiencies are O(10-l) for dispersions with ,h = 0.1 (Zhang & 
Davis 1991). 

Results for a model system 
Predictions of the phase separation due to simultaneous sedimentation and coalescence 
are made for a liquid-phase-miscibility-gap system composed of lead drops in an 
aluminium melt. This system is of practical use in the formation of self-lubricating 
bearings. The relative properties of this system at 700 "C are (Smithells 1962; 
Parsegian & Weiss 1982) ,u = 1.54 x lop3 kg m-' s-l , ,L = 0.62, y = 0.126 N m-l, 
p' = 1.02 x lo4 kg mp3, p = 0.24 x lo4 kg mp3, and A = lop1' J, where y is the inter- 
facial tension and A is the composite Hamaker constant. Since the drop phase (lead) 
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FIGURE 12. (a) The phase separation rate and (b) the fraction of lead which remains dispersed versus 
time for lead drops in an aluminium melt in a container of finite depth for an initial distribution 
having a, = 10 pm, v = 2.0 pm, 9, = 0.01. The solid curves represent N ,  = 5, 10, 20 and 30, 
respectively, from left to right. The dotted curves in (a) and (b) are the corresponding results for 
containers of the same height in the absence of coalescence (N, = 0); the dashed curve in (a) is the 
result for a semi-infinite container. 

is heavier than the continuous phase, a layer of lead liquid will accumulate at the 
bottom of the container. Calculated collision efficiencies versus the radius of the larger 
drop, with van der Waals forces included, are presented for this system in figure 11 for 
different size ratios, following the techniques of Zhang & Davis (1991). 

The phase separation velocity for an A1-Pb system with a, = 10 pm, = 2.0 pm, 
and q50 = 0.01 is shown in figure 12(a) for different N,. The collision time scale, 7c, is 
0.96 s for this system. The container height, H ,  was varied to achieve different values 
of N,. The corresponding container heights are 0.67, 1.33,2.67 and 4.0 cm, respectively, 
for N, = 5,  10,20 and 30. The corresponding results for containers of the same heights 
in the absence of coalescence are given as the dotted curves. It is apparent from these 
plots that coalescence significantly increases the phase separation velocity. The dashed 
line is the result of the phase separation velocity corresponding to a semi-infinite 



260 H. Wang and R. H. Davis 

container. It is seen that the initial phase separation velocities for N ,  = 5, 10, 20 and 
30 are the same as for the semi-infinite container. The phase separation rate then 
increases for short times, because coalescence leads to larger drops. Once the larger 
drops settle out of the dispersion, the phase separation decreases as smaller and fewer 
drops remain. The times at which the phase separation rate reaches its maximum are 
0.9, 1.3, 1.6 and 1.7 s, for time-scale ratios N, = 10,20,30 and 50, respectively. It is also 
shown that the maximum phase separation rate increases with increasing values of N,. 
Figure 12(b) shows the corresponding results for the fraction of the lead phase 
remaining dispersed as a function of time for the same dispersions as in figure 12(a). 
The dotted lines are the results for containers of the same height in the absence of 
coalescence. The times required for 90 YO of the lead drops to be removed are 2.9,4.6, 
5.8 and 6.2 s for N ,  = 5, 10,20 and 30, respectively. The times required for 90 YO of the 
lead drops to be removed for containers with the same heights but in the absence of 
coalescence are 4.3, 8.6, 17.3 and 25.9 s, respectively. 

5. Concluding remarks 
Quantitative predictions of the temporal and spatial evolutions of the drop size 

distributions and macroscopic phase separation rates in dilute droplet dispersions due 
to buoyancy-driven motion with coalescence are presented in this paper. Complete 
pairwise hydrodynamic interactions between two spherical drops are included in the 
analysis of the coalescence rates, but the effects of hydrodynamic interactions on the 
average drop velocities are neglected; this approach is valid for dispersions in which the 
droplet phase is a few percent by volume, or less. It is assumed that the drops have 
clean and uncharged interfaces, so that internal circulation occurs and there is no 
electrostatic repulsion. It is also assumed that the drops are sufficiently small that 
inertia is negligible, but not so small that Brownian motion is significant. Criteria for 
these restrictions have been presented previously (Zhang & Davis 1991); in general 
they are met for drops with diameters in the range of 2-100pm, with the range 
depending weakly on the system parameters. 

A dimensionless parameter, N,, is defined as the ratio of the characteristic 
sedimentation time scale to the characteristic coalescence time scale. For N, + 0, 
coalescence effects can be neglected; an analytical solution for the drop size distribution 
is available for this case. For N,+ 03, spatial variations in the population dynamics 
equation can be neglected, and the evolution of drop size distribution for this case has 
been studied in detail by Wang & Davis (1993). For finite N,, however, droplet 
coalescence will significantly increase the phase separation rate initially, and then the 
phase separation rate decreases after the larger drops are removed from the dispersion. 

This work was supported by NASA grants NAG3-993, NAG3-1277, and NAG3- 
1389, and by NSF grant CTS-8914236. 
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